
Open Data Kit
Building Information Services for Low Income Regions

Yaw Anokwa, Carl Hartung, Waylon Brunette,
Adam Lerer, Clint Tseng, Gaetano Borriello

http://opendatakit.org

My name is Yaw Anokwa. I’m a Ph.D. student in computer science at the University of
Washington. Today’s talk is about Open Data Kit, or ODK.

ODK is a set of open source tools for building information services. It’s been designed to
work in low income regions and the idea is that organizations can pick and choose the tools
they need to build their particular information service.

This is work that is done with Carl Hartung, Waylon Brunette, Adam Lerer, Clint Tseng, and
Gaetano Borriello. Open Data Kit is an open source project and you can find out more at
http://opendatakit.org

This presentation is based on a paper that will appear at ICTD 2010 in December. That paper
has a lot of detail, so for this talk, I’ll focus on a broad overview and touch on some of the
interesting things we’ve learned.

I’ll start with some background and motivation. I will then go over a few of the tools our team
has built and end with some qualitative feedback from our users.

I’ll use that feedback to convince you that the design decisions we have made in ODK enables
functionality for building information services that hasn’t existed before.

If you have questions, feel free to ask. We will also have some time at the end of the talk.

So what is an information service?

http://opendatakit.org
http://opendatakit.org

I work mostly in healthcare in sub-Saharan Africa, so let me give you an example of what I
mean in that domain.

When a patient comes into a clinic, the nurse fills out a paper form about the visit. The paper
form goes into the patient’s folder, and then when the patient comes back a few months
later, the doctor reviews what the folder and maybe along with some lab results written on
paper can make a decision.

So the data entry is done on paper, and the retrieval of that data is also done on paper. I call
this a paper-based information service.

With a paper-based healthcare system like this becomes really easy to miss trends in a
record, misread someone’s writing and prescribe the wrong drug. It’s also hard to search or
transport this paper.

Ideally, you want to make this system more computerized so you can address some of those
issues.

This is a summary of an HIV patient’s record generated from the OpenMRS medical record
system.

You enter the patient’s information using a phone, tablet or computer. Test results from the
lab automatically appear in the patient’s record. Graphs of weight are generated on demand.
Algorithms can find problems in the record and alert clinicians about mistakes.

In this case, we’ve taken paper-based information service and converted it to an
computerized information service.

Beyond the medical domain there are other paper-based systems you might want to consider
making more computerized...

• Government workers completing surveys about
households in a district.

• Microfinance institution tracking transactions
from lenders and borrowers.

• Crisis mapper tasked to capture images and
locations of damaged areas after a hurricane.

If you are doing a socio-economic survey of a remote region, it’d be great if you didn’t have
to transport all your paper forms via Land Rover and waste all that fuel. You might want to
send those results over the cell network so they appear at the main office. You might even
want to make the forms smart -- make sure ages are between 0 and 100 or that men don’t
get asked questions about pregnancy.

If you are doing microfinance and dealing with a lot of numbers. You might want to make
sure the data being entered in the paper form all add up, before giving out the loan. You
might want to send the recipient an SMS a week before their loan is due as a reminder.

There are also more complex examples where ordinaru paper-based systems just doesn’t
work.

If there is a hurricane and buildings have been destroyed, it’d be good to have pictures and
GPS coordinates of those buildings. It’d also be good if you could do this in real time and
task people to go to specific sites.

Basically, our claim is...

Paper-based practice in low-income regions
limits the scale and complexity of the
information services that can be provided
and thus the impact of the intervention.

We aren’t the only people who have had this idea. With the growth of cell phone usage all
over the world, there have been lots of projects where people use phones and computers to
replace paper.

Let me touch on why the current approaches are lacking.

Staying with the medical domain, here is a picture of a nurse using a PDA to do some
decision support. This picture is a good example of everything that is wrong with the current
approaches.

First, there is the choice of the platform. A lot of projects use PDAs and basic Java phones.
Much of this is cost driven -- you want the cheapest device possible.

The problem with this approach is that it traps your application on platforms that don’t last
very long. How many of you are still using a Palm Pilot? Anyone know a manufacturer that is
continuing to ship Windows Mobile phones?

The cheapest device possible also traps your application on a platforms that make it hard to
innovate. On basic feature phones, it’s really hard to do simple things like take a picture or
have a complex database without spending lots of time and money. The apps also tend not to
work across all the different kinds of phones people have.

Finally, there is also the cost of training. Teaching someone to use a stylus or entering a long
patient name with a basic phone keyboard is really hard -- you spend a lot of time and
money doing that. In low income regions, usability matters.

• Cost-cutting at the device level leads to
deploying on dying platforms that are hard to
program and hard to train for.

• There are also challenges in how extensible a
platform is across domains and how quickly you
can move data across systems.

• How do you enable this system to scale without
input from the original designers? Can we lower
the bar to independent innovation?

So we’ve talked about cost-cutting at the device level. Projects like EpiSurveyor and
FrontlineForms suffer from this. They are great for basic applications, but it’s hard to
innovate, hard to train and the device lifetime is really short.

There is also how quickly you can extend the platform across domains. Why can’t we build a
system that works for healthcare and microfinance and crisis mapping? More importantly, why
can’t the data we need move across other systems? Pendragon Forms has this problem, you
can’t easily move your data around.

Finally, there is how you grow and support this community as the project leaders leave the
project. Can we put these services on the technology curve which can drive the cost down, but
still allow for innovation? CAM is a project from a few years back that did a lot of things
correct, but failed to build a lasting community.

These are the issues we tried to solve when building ODK. So with that, let’s take a look at
what some of the tools actually are.

ODK Collect
Mobile-based data collection and delivery

Our first and most popular tool is ODK Collect, which is a mobile-based data collection and
delivery system.

This is a picture of a community health worker in Kenya entering data on a Google’s G1 smart
phone -- the first Android device. It runs an advanced (and open source) operating system. It
has a touch screen, 3G and WiFi, GPS, great camera, full keyboard, etc. It’s basically a
computer.

The way Collect works is that users get a prompt-at-a-time when collecting or delivering
information. They go forward and backward by using a swipe motion moving their finger
across the screen (similar to turning a page in a book).

Collect’s prompts include standard data types like text and numbers. It also supports
advanced data types including GPS, pictures, audio, video, barcodes, etc. They can also be in
multiple languages, they can be grouped, and they can loop.

The prompts are smart. They can have constraints so you always enter data that is valid. For
example, it can check to make sure age isn’t greater than 100.

Collect can also give prompts based on previous answers. This logic and the multimedia can
be paired to deliver information.

For example, if you are coughing and have a fever, we can show you a video about coughing
and fever and recommend medication. If you say diarrhea, then we can show you a video
about that and then give you information about safe water practices.

Collect also makes it easy for others to build extensions.

In this case, instead of the health worker typing in lot of text, she can use the camera to scan
a barcode which has that same information. You never have to type a really long id number
and so you get less errors.

Someone else wrote the barcode scanner program and this is the kind of innovation that is
possible with Collect. If you have the scanner program installed, you can use it. If not, you get
a regular text box.

You can do similar things with other sensors or other applications. So for example, if you
have a full medical record system on the phone, Collect could pull that information into a
session.

• Collect uses intelligent multi-lingual prompts to
collect and deliver information using a wide
variety of textual and multimedia formats.

• Logic and data is stored as XML and can be
transferred asynchronously via simple interfaces.

• Android design allows external developers to
rapidly add functionality without touching core
of ODK Collect.

• Works on a wide range of devices from
smartphones to netbooks to tablets.

So where does the logic come from and the data where does it go?

ODK Aggregate
Scalable data storage and transfer

Aggregate that hosts prompt logic and submitted data and provides interfaces for extraction
such as spreadsheets, maps, and queries.

It is an scalable level storage and transfer and was designed to run on the Internet as a cloud
service. So in the same way that email services run in the cloud, we wanted Aggregate to do
the same things and lower the bar for deployment.

The key here is that there are cloud services (namely Google’s App Engine, Amazon’s Web
Services, Microsoft’s Azure) free or cheap and take care of all the security and maintenance
and upgrades and scale issues. Aggregate makes that server piece easy for non-geeks to
deploy and tends to be more reliable than running a server in Africa.

Of course, because we know people work in disconnected environments or want to control
their data so, you can choose to run it locally. The same code base runs on a local Tomcat
server backed with MySQL or Postgres

Aggregate doesn’t have to hold your data forever. It can export data to other systems.

In this example, some forestry workers in Tanzania submitted data from Collect to Aggregate
and then exported to Google Earth. Managers can click on each yellow point and get the data
that was submitted.

Data from Aggregate can also go to SalesForce or Drupal or Google Spreadsheets in real time.
To do this, you just add code that connects to that service.

• Aggregate provides a server repository for
prompt logic and submitted data. Also provides
open interfaces to extract data and integrate
with existing systems.

• Designed to run on both cloud infrastructure or
on local infrastructure. One codebase that can
run on Google App Engine, Amazon Web
Services, and Tomcat.

• Abstracts the difficulties of relational databases
and simplifies extraction by using queries, maps,
reports, etc.

If you wanted to put together an information service, how would this work?

ODK Build
Design services with drag and drop

Build is an HTML5 application called designers can use. It runs in the browser but could also
run offline.

Let’s say you want to build a name and location survey. You drag and drop each prompt the
user will interact with from this button pane to the canvas. Each prompt has a set of
properties which users can edit. Users can rearrange ordering or add custom logic as needed.

Build generates an XML file that is the heart of ODK.

XForms are an XML-based form description and data exchange standard designed by the
W3C as the next generation of web forms. It’s an open standard and it’s Turing complete.

Supports a wide variety of control and data types including: text, integer, decimal, select-
one, select-multi, image, audio, video, barcode, and location. Also includes entry constraints,
read-only prompts, required fields, multi-lingual translations, and branching logic.

We use XForms to describe the application logic for Collect, but also to generate the storage
logic for Aggregate.

You can upload that the form to Aggregate and Collect can download the XML file that gives
you the prompts you see. That same form on Aggregate also builds the specific database that
Collect can submit to.

When you finish using Collect, it puts the data in this upper part of the form and sends just
this.

Because data like this is an open standard, it allows us to exchange data with other XForms
compatible systems. It also makes it really easy for others to connect to us.

• Build makes simple drag and drop information
services using a web based UI.

• XForms is an open standard that provides the
application and server logic as well as the data
exchange format for ODK.

• XForms ecosystem enables compatibility with a
wide variety of non-ODK tools. Interactions with
existing or future systems become possible.

Collect Mobile-based data collection and delivery

Aggregate Scalable data storage and transfer

Build Design services with drag and drop

Voice IVR-based collection and delivery client

Dropbox Lightweight file store for desktops

Tasks Task mobile workers from servers

Manage Automate application and data delivery

Visualize Visualize collected data on server

Clinic Capture and view clinical data on mobile

We’ve covered Collect, Aggregate and Build. ODK is a more than these three tools and I want
to touch on some the other tools we have.

ODK Voice is an IVR-based client. It does all the things Collect does, but it does it using the
voice channel. For example, you can have Voice call all the people in a district and ask them
for their age, gender. Based on their responses with their keypad you can play back age and
gender specific advice.

The respondents push the buttons on their basic phone to get or give information and all the
data gets fed back to Aggregate. So again, it’s just like Collect, it uses the exact same XForm
and data exchange, but it works with the broader population.

Dropbox is an example of a lightweight server. If you are running a small field deployment,
you might not want to setup something like Aggregate. Dropbox is really basic and just gives
you the raw submission files.

Collect can submit to Aggregate or Dropbox and Voice can submit to Aggregate. This is what
we mean by being able to pick and choose the tools you need for your deployment.

We are currently working on a bunch more tools like Tasks, Manage, Visualize and Clinic.

• ODK is designed to be composable and usable.
You pick and choose the configuration you like.

• ODK is designed to work with non-ODK
systems. You use simple interfaces to exchange
logic and data.

• ODK is built on open source and has a strong
community behind the software and the
hardware. You are free to do what you want.

These are nice bullet points but is there any evidence that ODK does the things it claims?

We selected four groups who were familiar with existing systems and had used ODK for some
time. We asked these groups to describe how they use the platform, what alternatives they
considered, what capabilities ODK enabled.

Here is what they said.

“It is relatively easy to train
enumerators using ODK as
the interface is highly usable,
even for people who have
little or no computer
experience.”

Berkeley Human Rights Center

HRC documents human rights violations. They fly into a country, very quickly train data
collectors and have to do very large surveys. They tried EpiSurveyor but found the cost and
limited number of available devices was a problem.

They now use ODK in Uganda and Central African Republic and have collected thousands of
hours worth of surveys. They have also made their own ODK compatible tools and released
those into the public. For them ease of use was really important.

“We have found that the ability to
synchronize and analyze data daily, as it
comes in significantly improves the
quality of the data.”

Berkeley Human Rights Center

These guys aren’t really programmers, but they were able to build their own tool called Kobo
that helped them analyze their data just in time and make adjustments daily.

“Before using ODK, we had
created data collection
functionality on Palm TX
devices using Pendragon
Forms. GPS information was
collected using eTrex devices.”

AMPATH

AMPATH is a large hospital network in Kenya trying to counsel and test about 2 million
people for HIV.

Previous to ODK, they used Pendragon Forms with PDAs and external GPS but found
challenges with training. For example, plugging in the GPS via cable and typing in the
coordinates twice to make sure you got no errors took a lot of training.

It was also hard to integrate with their existing medical record system or make modifications
to the mobile client.

ODK solved problems with the “clumsy
and unreliable” PDA and GPS. Training
was “much easier” and the captured data
suggests fewer data entry errors.

AMPATH

With ODK, getting GPS is a button press. They could also submit their data directly to
OpenMRS instantly instead of syncing their PDAs to MS Access and then transferring that data
over occasionally.

AMPATH switched to ODK last year have a few hundred Android devices being used in Kenya.
They are running studies right now but their initial numbers show cost savings.

“Features sometimes trump cost, one has
to make the choice between enhanced UI
vs minimal UI, advanced features vs
basic functionality, in our case we needed
to get more out of the phone and ODK
allowed us to do that.”

D-Tree International

D-Tree is an NGO that uses PDAs and basic phones to do clinical decision support primarily
in Tanzania. They’ve always used the cheapest phones, but have been trying to put more
medical data on phones.

D-Tree has created an peer-to-peer application that synchronizes patient information across
other phones and servers. This functionality enables portable patient record systems that
works across a variety of connectivity scenarios found in developing regions.

Collect can integrate with this system.

“Quick and easy user interaction...a
bit of technophobia by users when it
comes to the higher end phones that
ODK runs on.”

D-Tree International

At the same time, D-Tree had problems. They’ve been concerned with security issues of the
smart phones being used in really poor areas. For this reason, they are deploying ODK in
facilities.

“...we did not find other open source
alternatives we could integrate. We did
consider creating a form system
ourselves. We chose to go for ODK to
save development time and follow the
XForms standard, even we would lose
freedom and flexibility.”

John’s Hopkins Center for CGHE

John’s Hopkins wanted to build a system that improved health care provider communication
and information.

They have their own tools, like a server that generates clinical statistics and a phone client
that has lots of video courses. They needed a way to test their users and so that’s what they
use ODK for.

Like all programmers, they did struggle with loosing the ability to do whatever you want with
a platform -- working in a community is sometimes hard.

“[ODK] is used for patient data
gathering, and to give an exam
after watching a video course
on the phone, to make sure the
user understood the content.”

John’s Hopkins Center for CGHE

Despite the initial concerns, they’ve been pretty happy.

• HRC: ODK’s cost of deployment and short
timelines drove much of their decision.

• D-Tree: Impetus was backwards compatibility
paired with ease of use and development.

• JHCCGHE: Focused on integration with a
larger set of mobile and server tools.

• AMPATH: Needed to integrate with a medical
record system and usability was key.

So what we conclude is this...

Based on the feedback from four
implementers, ODK has demonstrated it
can enhance information services in a
variety of low-resource environments.

Our users report ODK is easier to use, more
capable, more cost-effective, and more
accurate than the alternatives they
considered.

The number of users we asked is small but we also have a steady growth of groups picking up
ODK and using it -- not just in developing countries but in developed countries as well.

We have seen non-experts build working information services.
We have seen independent developers check in code.
We are seeing companies making money building services with the platform.
We are also seeing previous systems like CyberTracker, MyExperience and EpiSurveyor are
also porting their work to ODK.

These anecdotes are not evidence, but they suggest we are on the right path.

Going forward we need to prove if the
relatively higher cost of the phones cover
the anecdotes of cost savings from less
training and data accuracy.

Building more tools that exploit the
smartphone functionality. Examples include
ultrasound on the phone, richer text free
interface, workflow management, etc.

So that’s the end of my talk.

Before I take questions, I need to make a plug for Change.

ODK is the result of Change – a group
based at the University of Washington

exploring how technology can improve the
lives of underserved populations.

http://opendatakit.org

http://change.washington.edu

http://opendatakit.org
http://opendatakit.org
http://change.washing
http://change.washing

