
Optimizing High Latency
Links in the Developing World

Yaw Anokwa, Colin Dixon, Gaetano Borriello, Tapan Parikh
University of Washington, University of California at Berkeley

ItÕs always tough be the last speaker in a workshop, but IÕll try to make it as painless as
possible...

My name is Yaw Anokwa, IÕm a third year computer science PhD student at UW. This
ÒOptimizing High Latency LinksÓ work was done with Colin Dixon (a UW grad student in
networking) and my advisors, Gaetano Borriello at UW and Tapan Parikh at Berkeley.

This is an invited paper, so itÕs all work in progress. If you have any feedback, IÕd love to hear
it. Also, feel free to ask questions during the talk -- IÕd love to hear people challenge my
assumptions.

IÕll just go through some of our motivation, challenges, the previous work and what we are
working now.

This picture is taken in a small town called Rwinkwavu in Rwanda, a tiny landlocked country
in East Africa.

Rwinkwavu is in the middle of nowhere (intermittent power, water, cell, etc), but it is a
beautiful place and if you are looking for a quiet place with intermittent everything, itÕs the
place to be!

I spent six months in Rwinkwavu last year at a hospital network run by Partners in Health.
The two hospitals and Þve clinics host a model for a comprehensive healthcare program that
is being scaled up nationwide.

This is exciting work that is done with the Ministry of Health and the Clinton and Gates
Foundations.

As part of the scale up, some Internet connectivity has been deployed. Because Rwanda is
land locked most of these connections are satellite based which then connect to a wiÞ
network in the hospitals.

The connectivity is used to communicate over the web, and to implement an electronic
medical record system (called OpenMRS) for tracking all the HIV/TB patients.

The guy who manages the connectivity at all the sites is called $F, and heÕs deÞnitely one of
the best network admins in the country. He is responsible for all computing and networking
infrastructure and heÕs had quite a bit of training in South Africa. He is basically the local
champion.

That said, when I arrived in Rwinkwavu, the connection was managed by an old Belkin router
as the fancy Cisco crashed regularly and was just too hard to conÞgure. There was no caching
or QoS implemented on the network.

Part of my job was to make this situation better and do it in a sustainable way, so it would
work after I or $F left.

This paper is really driven by my experiences in Rwinkwavu and so letÕs start with what big
challenges were.

Challenges

¥Latency is a problem for networks whose
usage patterns tend to swamp the low
bandwidth, high latency links.

¥Providing users with adequate service
requires training and tools that are not
easily found in low income regions.

Almost all the tra!c we see in Rwink is web tra!c and the occasional Skype call. VSAT is
pretty latent as is and because of the lack of QoS it was pretty easy for one long lived
connection to kill all the short connections by sticking them into TCP slow start.

ItÕs not so much the throughput that was the problem, but the latency and usage patterns
meant the links get swamped. And as I am sure you know that just makes the connection
unusable. We got a lot of complaints.

In addition to latency, providing the best service goes beyond just getting connectivity. The
amount of training required use Squid or conÞgure a Cisco router and do other network
optimizations was just beyond what the capabilities of our sta" had.

We donÕt think our deployment is unique. Low bandwidth, high latency connections are the
standard in the developing world. And I would say most of the sta" that run these networks
arenÕt well trained.

Previous Work

¥You can solve latency with TCP hacks,
proxies, caches, time shifting, delay tolerant
networking, ad blocking, compression, etc.

¥Problem? Research code, non-interactive
apps, no media, etc.

So there is a lot of work on the Þrst challenge of latency. Neil Spring at UW at InfoCom 2000
addresses some of these issues in his ÔReceiver based management of low bandwidth access
linksÕ. Really good read if you get the chance.

There is also work on TCP optimizations, proxies of all sorts, delay tolerant networking, ad
blocking, compression, etc. You can see the paper for some of the references. Some of this
can be done in parallel with a solution, but we need something deployable and realtime.

Everyone uses Facebook and Gmail...

Previous Work

¥You can ÒsolveÓ sustainablility with apathy,
frustration, trial and error, Yahoo!
Answers, WNDW, home router.

¥Problem? Apathy, frustration, trial and
error, Yahoo! Answers.

The second challenge of a deployable system is a little harder.

Worst case is basically giving up or getting angry. Some of our admins uses Yahoo! Answers
to try to Þgure out. At best you can get a home router, but that gives you an iptables setup
that is generally used for asymmetric links and is pretty outdated.

In our case, there was a fair amount of trial and error as well as trying to use online texts.
Bottom line? Too much work for such a hectic environment. We have power failures and
networks to keep running.

We need something that goes beyond research code. Something that requires little
documentation and a great interface. Something my parents could use. We need something
that $F can deploy and maintain.

Latency

Measurements

¥VSAT with 700 kbps down, 200 kbps up.

¥UDP packets from Seattle to Rwanda over
72+ hours. The uplink and downlink were
sampled separately.

¥Some clock skew in the results, but the
signal is much larger than this noise.

As a quick demonstration of the problem, we did a few quick measurements.

The VSAT does 700 kbps down and 200 kbps up. Tra!c goes from Rwanda to Israel then on
to the internet.

To test things, we sent UDP packets between Rwanda and Seattle. We sampled the uplink and
downlink separately and although some clock skew, but it didnÕt change the facts of the
problem

la
te

n
cy

 (
se

cs
)

0 12 24 36 48 7260

1

3

5

7

2

4

6

Uplink Latency

time (hrs)

On the y-axis is the latency in seconds and the x-axis is the time.

We did this across a three day period. Hours 12,36,60 is about 10 am in the morning. This
gap is from the connection going down -- which happens about once a week.

Uplink: Average delay is 478 ms, minimum is 376 ms. Nothing very exciting.

la
te

n
cy

 (
se

cs
)

0 12 24 36 48 7260

1

3

5

7

2

4

6

Downlink Latency

time (hrs)

Average delay is 572 ms with the same 376 ms minimum. You can see these sustained 2-5
second latencies during working hours.

The spikes are mostly due to long lived downloads. Either attachments or some heavy objects
on web sites. This kind of the meat of the problem and after thinking, this is a Þrst cut at our
solution.

QoS Approach

¥Simple QoS prioritization be used to provide
more behavioral classiÞcation of ßows instead
of protocol and port.

¥Assume high bandwidth ßows are more
tolerant of high latency whereas low bandwidth
ßows are not.

Because all our tra!c goes across port 80, classic port and protocol optimizations basically
donÕt work.

We are doing more behavior-based classiÞcation. Our underlying assumption here is that
high-bandwidth ßows will be more tolerant of high-latency, whereas low-bandwidth ßows
will better beneÞt from low-latency.

This approach will likely work because of the workload we see in the developing world [Bowei
Du, Mike Demmer @ WWW 06].

A lot of the object sizes we see are heavy-tailed, which implies that ßow duration will be
heavy tailed. Flows which have used a lot of bandwidth are likely to continue dominating the
links. Such ßows should be tolerant of extra delay.

QoS Approach

¥QoS will divide ßows into fast (ßows which
when grouped will not cause queueing) and
slow (all others).

¥All queuing is at one point before link. We
ensure all ßows are fed, but migrated to the
appropriate class with sliding window
estimate of throughput.

So we are going to look at two classes for ßows: fast and slow.

The fast class will contain a number of the smallest ßows such that they will not cause any
noticeable queueing among themselves and so can achieve near the physical link latency.

The rest of the ßows will be classiÞed as slow and given no guarantees of reasonable latency.

An example of a fast ßow is the individual HTTP requests for text on webpages, while an
example of a slow ßow is requests for large Þle downloads.

All the queuing is managed at one routing point and we are using a sliding window
estimation of each ßowÕs throughput to dynamically determine which class is each ßow is in.

ItÕs not fancy, but so far it has worked in our simulations.

Deployment

Devices

¥Routing code is being written for Linux and the
OpenWRT platforms. Targeting the Linksys
WRT54G and Asus WL-500G.

¥Put emphasis on device interface and
documentation to ensure sustainability.
Looking at tools like eBox, webmim,
ClarkConnect.

Our target platform is Linux and OpenWRT which is open source Þrmware which runs on a
bunch of routers.

We really like the Linksys WRT54g, which is a device that sparked this open router movement.
Even better is the Asus WL-500G which has USB ports so you can attach a ßash disk and do
caching and routing.

Both of these are readily sourced, easy to upgrade and are just a lot more robust than a
desktop PC in a dusty, dirty environment.

We are putting a emphasis on doing a lot of interface and documentation work to make sure
the stu" is sustainable.

Status

¥Core of routing code has been written and
cross compiles to OpenWRT.

¥Starting the push to do initial sketches on
interface. Hope to take a bunch of sketches
to Rwanda next time IÕm there.

¥Evaluate effectiveness on both the latency
and usability of the system. Compare with
high end similar routers.

Again, this is still a work in progress, we are working on two platforms. Colin is putting the
Þnishing touch on the routing code.

We are starting to do the work on the interface. It will likely be based on the existing router
interface. We have a plan to head to Rwanda and iterate through a bunch of user interfaces
and documentation so we can deploy something that our sta" can use.

Evaluation plan is to run real tra!c through it and just see how comfortable $F is with the
system. It may also be good to compare it to some more expensive stu".

So with that, are there any questions?

Questions?

Really want to encourage everyone to really start getting in touch with real deployments and
building real systems.

